The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles
نویسندگان
چکیده
Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection.
منابع مشابه
A novel method of cinnamon oil nanocapsulation in core-shell chitosan-alginate by freeze dryer
The objective of this work was to characterize the cinnamon oil nanocapsule that contained alginate-chitosan as coating agents. In this work, cinamonn oil loaded chitosan nanoparticles (CS-alginate NP-cinamonn) are prepared by a two-step process including oil/water emulsion and ionic gelation. In this study, cinamon as a core material was nanoencapsulated with chitosan alginate at a ratio of 1:...
متن کاملNimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies
Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...
متن کاملNimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies
Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...
متن کاملDesign and performance investigation of electrospun PVA nanofibers containing core-shell nanostructures for anticancer drug delivery
Objective: The purpose of this work was design and performance investigation of a nanocarrier based on magnetic nanofibers containing core-shell nanostructuresfor anticancerdrug delivery of daunorubicin (DAN) by measuring their drug release at different pH values. Methods: Fe3O4 nanoparticles and Fe3O4@SiO2core-shell nanostructures were synthesized through coprecipitation and Stöber methodresp...
متن کاملPreparation, Characterization and in vitro Studies of Chitosan Nanoparticles Containing Androctonus Crassicauda scorpion venom
Many strategies have been developed to improve vaccine delivery in the past decade. The aim of the current study was to develop a nanoparticulate system based on ionic gelation between chitosan and tripolyphosphate in order to load Androctonus Crassicauda scorpion venom. The best formulation was selected according to the highest association efficiency, loading capacity, optimum particle size an...
متن کامل